For children, adventure games can create a fantasy world in which to immerse themselves. It is a world where they can be excited by new and challenging situations and show extraordinary tenacity in their efforts to solve problems.

For teachers, the adventure game environment can be a framework for structuring a diversity of learning activities for children in their class. This environment can provide opportunities for children to take responsibility for their own learning, where collaborative work, the development of higher order thinking skills, discussion and decision making skills are fostered.

For Mike Matson, adventure games first meant creating and writing little programs which could be used by a small group of children for very short periods of time in a one computer classroom. This was the beginning of 4Motion Software which introduced so many children and teachers to their first adventure game - Granny's Garden.

The "original adventure" began nine years ago according to Mike, who spoke with Gerry White of the Australian Council for Computers in Education at the World Conference on Computers in Education (WCCE90) held recently in Sydney.

Mike said he was prompted to enter the world of computers by a friend who had provided him with a very expensive piece of hardware "to play with because it was good for (his) soul". He found himself immersed:

"in this subterranean world where things happened ... and ...(I felt myself) becoming a computer junkie, but when I stopped and thought about it I realised that if it could have that sort of impact on me ... think what it could do in the classrooms."

This feeling persisted, he said, and led to a rash suggestion at a parent meeting that a computer be purchased. His colleagues in the staff room were most irate. Football shirts, textbooks or library books would have been far more useful for them in the school program. To convince them of the value of this new purchase and in the absence of any software, Mike decided to "write a program a week" for each of the four year groups at the school. Not surprisingly, he soon discovered that:

"to write anything that was any good took a fortnight ... actually it takes weeks, if not months, if not years. Anyway it didn't really matter because I was just filling in until the good stuff arrived. However, it didn't. So I spent a year writing little programs waiting for the good stuff to arrive."

His aim in writing adventure games was a practical one, where the limited number of machines did not cater for long use by large numbers of children. There was a need, he felt, for software which would generate learning activities away from the computer. He was adamant that when writing he did not consider the

"educational implications ... it's the teacher's problem to decide whether or not it has any educational value ... people could say all sorts of things about symbolism and the underlying things ... but for me (Flowers of Crystal) was just a story that came into my head ... in the package you have got suggestions for teachers. They (the suggestions) come afterwards. They don't come first."

He did, however, have some advice for teachers using computers in Australian schools and ideas about how he believed computers could be used in the classroom.

"Don't listen to the gurus, don't listen to the experts ... do what you think is right."
He had always advocated the use of one computer in a classroom, he said, but with the advent of 32 bit technology new horizons had been opened up for children in the classroom. Desk top publishing software had created opportunities for children to "achieve something worthwhile", and this required time. "A room full of computers" he said, would give children the time needed to produce material of quality.

The new 32 bit technology also meant a change in direction for his software company. They decided to develop material which could have a much wider application, could be used by a broad age range both within and outside education. Craft Shop for the Archimedes computer was their first piece of "creative application" software. In writing this package, Mike wanted to "give children the opportunity to do something with a computer which could be done using real materials, but takes a long, long time ... so there are four units in the Craft Shop suite, one of them is embroidery ... it gives you a buzz to see a group of boys who, if you gave them a needle and thread to do some embroidery, would turn their noses up. But do it with a computer, it's completely different ... maybe (it will) inspire them to go away and do some real embroidery."

And what inspires Mike? Does he have dreams about children, computers and the future?

"I try not to think too much about the future ... because no-one ever gets it right ... so dreams - not really ... all I'm concerned about is getting ideas for my next project."

Jacqui Dean was one of the founders of the Prolog Education Group (PEG) based originally at the University of Exeter School of Education (UK). Jacqui, a Historian by training, has had the good fortune to work alongside both Jon Nichol and Jonathan Briggs: Jon Nichol, a senior lecturer in History Education is renowned for his unconventional thinking and incisive mind; Jonathan Briggs for his insight and Prolog programming prowess. Together, like an educational super-team fighting the misplaced conventions of the day, these three battled to put children firmly in control of the microcomputer.

This was all happening in the early 1980's, a time when in the Social Science co'computers were largely used for simulation and recall work, when children used software that, at best, involved limited interaction with some predetermined model of a past event. At this time software developers concentrated on bringing simplistic wiz-bang graphics and sound to the classroom without much thought given to the nature of the interaction between children, learning and computer. In contrast to this, Jacqui and her Exeter team developed a range of software tools that enabled teachers and children to represent and challenge historical ideas, facts and figures.

Jacqui's outlook is at once both refreshing and familiar; she continues to hold onto those ideals that were formed during her early days at Exeter.

She believes that we need to take stock of where we are, of what we have achieved in terms of educational computing to date. Certainly the technology has made great advances: back in the early 1980's many of us could perhaps not have predicted the levels of sophistication that technological tools have now reached. But the educational aims of using IT have not changed - essentially we are still trying to justify the use of IT to enhance children's learning experiences. But how much of what we are