When I was first approached to write this paper I wondered ‘What is “right-brain learning” and what have I been doing with computers to cater for students who have this preferred learning style?’ I scoured through many education journals and found that there were very few recent research articles on right brain learning styles but an abundance of articles on left brain learning styles. After reading through a handful of articles I had found, I began to realise that this issue of preferred learning styles was quite complex (e.g. a student can have a different preferred learning style in each subject area and not just one over all subject areas).

I began to take a closer look at why some of my students were succeeding in one subject area and not others. After observing my students closely, I created an individualised check list for each student covering the types of activities, groupings, equipment used and his or her strengths and weaknesses. Through this activity I gained an understanding of why some of my computer activities were more successful than others. One such computer activity that was extremely successful was the utilisation of computer drawing programs to illustrate students’ stories as demonstrated by Phil Callen at the 1990 World Conference for Computers in Education. At the time this approach to using computers in the classroom was quite revolutionary to me as until now I had been struggling with word processors and computer graphic packages to produce and illustrate students’ stories.

Like many teachers at the time, while originally enthused by the idea of using word processors to publish children’s writing, I soon found this activity both time consuming and an inefficient use of computers. Watching my 8- and 9-year-old students struggle with the typing; one fingered and four words a minute; collapsing exhausted at the end of a mammoth typing session; only to find many errors or to have the story wiped before it had been saved, summarising and identifying main ideas to map out their stories in a series of three to six pictures and listed the main ideas presented in each picture. The main ideas were then used to form paragraphs and the students wrote a script to accompany their pictures. The other proforma emphasised the left-brain thinking skills of writing, outlining and analysing stories. The students were required to write the story first and identify the narrative components in their story and then illustrate their writing in a series of three to six pictures. Although the task was the same, that is, to write a story, they chose their own path to achieve it.

The students were asked to work in groups of two or three to produce their stories. The dialogue, problem solving and cooperation skills that evolved out of this process were most productive and task commitment was high. Every student felt confident about his or her role in producing his or her cartoon.

When they had mapped out their story pictorially and written their script to accompany the pictures they were ready to go to the computers and commence drawing their picture slides. In preparation, they had spent one term ‘playing’ with the program Deluxe Paint III acquainting themselves with the various tools, saving and loading processes they would use.

Each group was given a data disk and a computer time slot during the day. I found that it assisted the students with continuity when they were given a block of time (e.g. from recess to lunch). We found we could successfully manage four groups of students with a block of computer time during the school day. The computer ‘ran hot all day’.

The groups also had a ‘log’. They went to the computer with recording the role each member played (e.g. computer artist, encourager [or backseat driver], date, time spent on the computer and the pictures they had completed). Each group member had to rotate his or her role every time he or
she went to the computer so as to have opportunities to develop skills in each role.

When they had completed their series of picture slides, to illustrate their stories and create a title and credit slide, they were sent off with a tape recorder to record their script on tape. Some of the sound effects they recorded were highly creative.

The next stage of timing the picture slides to coincide with the tape recording was too difficult for the 8- and 9-year-olds but Year 6 students coped well with the task. We used the program TV Show to create a computer slide show from the drawings we had created on DeluxePaint III. The computer and tape-recorder were plugged into the Video and Audio in connections on the back of the video recorder, played simultaneously and videotaped.

The students had a television showing of their cartoon 'in-class' and discussed and shared techniques they had used to produce pictures and sound effects with each other. But the highlight of the whole procedure was when we had a 'showing' of our cartoons to Year 1 who gave the students the best feedback of all as they laughed and clapped with delight at their cartoons.

The 'cartooning' process of story production provided all students regardless of preferred learning style an opportunity to create a narrative and also develop skills in the non-preferred learning style that would assist them to utilise both brain hemispheres.

The 'worth' or success of this computer activity was not just the superb stories they created but the increased self-esteem each child displayed. They all had a sense of 'I can do this. I want to do this.' During the whole term we worked on the cartoons, not one child grumbled about the numerous writing tasks, catching up on missed work in other subject areas or the hard work involved. My greatest difficulty in classroom management was getting them to turn off the computer and go out to lunch or go home. It was a most rewarding experience for all concerned, me especially.

The next term, we used what we had learnt from the cartooning process to create a documentary, All about Frogs, incorporating the report, explanation, procedure and narrative genres. Although the computer picture slides and scripts were completed, I did not see the video completed as I left the school for warmer waters on the North Coast.

NOT “JUST” ART:

computer paint programs and ideas processing

Philip Mellifont

ADVISER, LEARNING TECHNOLOGY

DARLING DOWNS CENTRAL SCHOOL SUPPORT CENTRE

The recently published National Curriculum for Technology lists 'Designing, Making and Appraising' as one the strands which will provide an integral framework for units of work involving technology. Computer paint programs provide a design medium which integrates well with all aspects of the curriculum. Design is important in that it combines functionally with the aesthetic, thus challenging art, science and every aspect of human pursuit. This paper will outline some of the ways paint programs can be used in the classroom so that children's learning is enhanced, and will make reference to the ways paint programs provide the ideal medium for Designing, Making and Appraising.

THE CLASSROOM: WHY USE A PAINT PROGRAM?

We live in a visual world, in many ways we store information as visual images. In terms of the classroom, a paint program can be used as a cross-curricular tool for visual information. Incorporate text and sound and the images can be regarded as true classroom multimedia. For the average classroom teacher, a little expertise in managing class projects involving 'paint publishing' is easier to handle than many other classroom computer applications. Paint programs can be incorporated meaningfully into any learning situation and any year level, and unlike applications such as word processing, paint programs can be more easily managed in the classroom environment given the current level of computer resources in most classrooms, that is one computer per thirty children.

Children working in groups can cooperatively produce a piece of work using a paint program in a relatively short period of time. Paint programs provide a resource where children can explore design and aesthetics in a totally new way. Children who claim they 'can't draw a straight line' no longer need to — the straight line tool does this for them. In fact the work produced on the computer by the child who usually rubs his or her way right through the paper looks just as good as the artistically 'gifted' child. As the work produced by each child at the computer possesses the same qualities and integrity — the emphasis changes from product to process; the place where teaching and learning actually occurs. Children can access every two-dimensional shape, perspective, colour, movement, and gain the freedom to experiment and make mistakes without having to re-create...